Estimating Ego-Motion in Panoramic Image
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Abstract This paper considers the problem of tracking the focus oegjon of a
panoramic image sequence due to ego motion of the camer&direof expansion
provides a measurement of the direction of motion of thealetthat is a key re-
quirement for implementing obstacle avoidance algorithivespropose a two stage
approach to this problem. Firstly, external angular rotatneasurements provided
by an on-board inertial measurement unit are used to déertita observed optic
flow field. Then a robust statistical method is applied to fewa rough estimate of
the focus of expansion as well as a selection of inlier datatpassociated with the
hypothesis. This is followed by a least squares minimisatitilising only the inlier
data, that provides accurate estimates of angular rotatidrfocus of expansion of
the flow. For the robust estimator we consider and compare SXMNor k-means
segmentation algorithms. The least squares optimisagisolved using a geomet-
ric Newton algorithm. The approach is demonstrated on rai@ dbtained from an
aerial robotic equipped with panoramic cameras.

1 Introduction

The estimation of the ego-motion of a camera from obsemati@ sequence of im-
ages is a classical problem in the computer vision liteeatlihe classical approach
for a projective camera involves recovery of the fundamentrix between each
two images and reconstruction of the motion primitive frdrage correspondences.
Algorithms based on eight or more point correspondencesql&dre well known,
while for calibrated cameras algorithms exist for as few @as fioint correspon-
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Fig. 1 Video image and optic flow (left) extracted from on-boardeadccamera of thélumming-
bird quad-rotor aerial robot (right)

dences [14, 19]. In the case where high accuracy is requieedundle adjustment
method can be used [22]. In addition to the classical meththése have been a
wide range of other methods considered in the literatureZ0311, 10, 3, 18].

It is well known that for an image sequence with a small fieleddew it is dif-
ficult to distinguish between translation and rotation acbarthogonal axes [2, 6].
In addition, there is is often a natural bias in solving th&tamtaneous epipolar con-
straint, the most common approach to recovering instantasmotion, associated
with grouping of image points in one small area [6]. Usinggamic or catadiop-
tric cameras with a large field-of-view can substantiallgmome this issue [6].
Due to the inherent ambiguity in velocity there have beenralmer of studies based
qualitative analysis of ego-motion methods [4, 5, 21] thilise panoramic cam-
eras, however, these methods often use explicit searcinesubd determine the best
motion fit and are computationally expensive. In recent wadnk and Barnes have
developed methods to compute ego-motion from antipodas pdioptic flow vec-
tors [15, 16]. Almost all the literature in this area has bdeweloped based on the
assumption that the camera is the only sensor. In robotitcapipns, especially
those involving aerial robots, there is almost always amtimemeasurement unit
(IMU) embarked on the vehicle that can provide a substdytialrrect estimate of
rotation over short periods. However, the vision systemsforh applications of-
ten has poor quality optics, and if the video signal is benaggmitted to ground
there are artifacts due to signal interference. The autkiosv of no prior work
that addresses the specific issues associated with egomaatiraction for such a
situation.

In this paper, we propose an algorithm for extracting egaéiondrom a pano-
ramic image sequence where the angular velocity of rotat@mbe roughly mea-
sured using a separate sensor. We are primarily motivategplcations in aerial
robotics where the vehicle is equipped with a wide angle digh{or catadioptric)
lens, and inertial sensors. The vision sequences obtainedguch vehicles often
contain large regions where there is insufficient texturgenerate optic flow, for
example, regions of sky, or regions distant from the camérara/the optics are
of insufficient quality to generate good texture. In additithere are often extreme
outliers in the optic flow field caused by errors in the optievilmlgorithm induced
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by artifacts in the video due to signal interference and mpath effects in video
transmission. We propose a two stage approach. Firstlig @t is computed from
the image sequence and then this flow is roughly de-rotaied tise data from the
gyrometer. This is achieved by subtracting the expectediortal optic flow (due to
the measured angular velocity) from the measured optical file resulting flow
is almost entirely due to the translational ego-motion ef¢mera, except for er-
rors and noise, and has a simple structure that allows usvelatesimple models
to determine the unique Focus-of-Expansion (FoE), coording to the direction
of motion of the camera. We investigate two robust staticethods, RANSAC and
K-means, aimed at generating a reasonable hypothesis #ota®f the flow and
identify inlier and outlier optic flow measurements in theadaThe K-means al-
gorithm has the advantage that it can potentially identifyd aegment secondary
motion primitives that may be associated with motion of otbigiects within the
scene. We then describe how an initial estimate can be reifinkedth translation
and residual rotation by minimising a least squares costcas the instantaneous
epipolar condition posed on the sphere. We compute the geicngeadient and
geometric Hessian and propose a Newton update step. The@Nevinimisation is
embedded in the RANSAC framework as the second model refimestep for each
iteration. Given that the initial estimate provided by thstfstage of the algorithm
is moderately correct, this stage usually converges in at thoee iterations. More-
over, the eigenvalues of the Hessian provide a measure tifleoe in the estimate.
A poor condition number for the Hessian indicates the Ih@did of an unreliable
estimate and the overall magnitude of eigenvalues is ptigpal to distance scaled
velocity of the vehicle. The proposed algorithms are testedynthetic data with
outliers and noise, and demonstrated on video and inegtal abtained on a small
aerial robotic vehicle.

2 Problem formulation

In this section, we introduce some notation and develop disé fanction that will
be used to refine ego-motion estimates on the sphere.

We are interested in applications where there is a wide fildeov fish eye or
catadioptric video camera moving through a static worldremment. We assume
that the camera frame rate is fast compared to the relatitieabpelocity of the
observed scene. Consequently the optic flow can be compurtsadlyl on the raw
image sequence and the resulting flow vectors mapped bacla@ptherical image
plane based on a known calibration of the camera. The sgthertical flow field
is denoted® and associates a flow vect®(n) € T, < in the tangent space of the
sphere to a poiny € S on the sphere. In practice, we are normally constrained to a
sparse computation of optic flow, that is measurements atta finmber of points
on the sphere that we will index Hyj; } fori = 1,...,n, with n the number of optic
flow vectors measured in a given reference image.

The optic flow can be split into a translational and a rotatlgart

®(n)=%(n)+om). 1)
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Here©(n) := —Q x n, with Q € {B} the body-fixed frame angular velocity of
the camera, is the contribution to the optic flow from the tioteal motion of the
camera, while the translation component of flow is givenyin) := Wln)]P)nV-

whereP, = (I3—nn") is the projector ontd, S andv € {B} is the body fixed
frame translational velocity of the vehicle.

In order to derive an optimisation based method for idetificy of ego motion
it is necessary to define a cost function. We propose to used#ietbversion of the
instantaneous epipolar constraint. beténote the estimate of ¢ S of the true
direction of motion of the vehicle. That is, set

%
w=—, forv#£0,
V]

andw € & an estimate ofv € $2. The direction of motiomw is also the Focus-of-
Expansion (FoE) of the translational flow fiefelon the sphere.

For each individual optic flow vecto®(n) measured at a point € § the in-
stantaneous epipolar constraint computed for estinvasd Q is

e (W, Q) i= (W, (@(n) +Q x n) x n). 2)

Note that if Q is correct therd(n) + Qx n = W¥(n) is the true translational optic
flow. Taking the vector product of this with its base painkeads to a vector that is
orthogonal to the direction of motion of the vehicle. Takthg inner product of the
resulting vector wittw’is zero precisely whew = w is the true direction of motion.
The instantaneous epipolar constraint is often writérx n, (CD(r)) +Qx r;)),
however, this can be transformed into (the negative of) Equé2) using the prop-
erties of vector triple products and the form given abovedaserconvenient for the
gradient and Hessian computations undertaken later.

Since the optic flow is measured at a finite number of scatteoéuts the cost
considered is a sum

f(W,Q): Zez (W, Q) = i(W,(CD(r])wL_éxr))xr])z (3)

Itis clear that for ideal data the cobis zero for the correct fow =wandQ = Q.
The costf is a smooth functiorf : & x R® — R and can be optimised on this
set using geometric concepts. A weakness of the cost prdpsdkat it is highly
susceptible to perturbation by large magnitude outlierhéndata. Optic flow al-
gorithms often yield exactly this sort of error due to ocoasi mismatched point
correspondences. Thus, direct minimisation of the doist likely to lead to poor
ego-motion estimation. The following section applies rsttstatistical algorithms
to overcome this issue.
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3 Robust estimation of Focus of Expansion

In this section we present two robust statistical methodgfoviding an estimate
of focus-of-expansion of the image sequence. The appraatibeictly based on the
application domain and we assume that a measurement ofaanglbcity of the
vehicle is available. This is obtained through the inenti@asurement unit that is
mounted on the aerial vehicles that we consider.

Using the measured angular veloci@, € {B}, the measured optic flow can be
de-rotated. That is we define

Wo, (i) := @(ni) — Oq,(Ni) = @(Ni) + Qy x ni.

The resulting estimatety, (ni), of translational flow is only defined at measured
flow pointsn;.

Any two measurements of translational ﬂékly) (n.) and%,,(n;) can be used
to generate a hypotheses for the focus of expansmn of the‘lédnw Since the flow
vectors must lie in a plane containing the flow vector and @eetpoint; then the
intersection of these two planes provides an estimate dbitties-of-expansion for
the flow field. Thus,

(Wo, (ni) x ni) x (Wo,(nj) x nj)
|(Wo, (i) x ni) x (Wa,(nj) x nj)|

This hypothesis is sign indeterminate so we introduce aected hypothesia; is

e (Qy, i, Nj) 1= W(Qy, i, N;j) - SigN((W, (1)) (5)

There are potentiallp(n —1)/2 (wheren is the number of flow vectors measured)
hypotheses that can be generated based on (4).

The K-means algorithm is based on collecting a large numbef bypothe-
ses and then clustering these hypotheses into classesshi&andard algorithm
[8, 12] that is extensively used in the field of computer wisémd we will not cover
the details of the algorithm implementation. Distance leetwhypotheses was mea-
sured by the cosine of the angle between the two hypothebesedtimate of the
focus-of-expansion is provided by the normalised meanefdrgest cluster of hy-
potheses. Outliers are identified using the clusteringtifieation of the algorithm.
The Newton algorithm, described in Section 4 can be apptieti¢ support set of
the best cluster from the K-means algorithm to refine the é&ténhate, however it
was found that this would often not converge if there areiegtbresent (see section
5).

To overcome these limitations, we merged the hypothesisrgéon of the K-
means approach and the Newton model refinement into a moustr&ANSAC
framework. The RANSAC algorithm is based on consensussgaf hypotheses
and once again is a well known algorithm extensively used@mputer vision appli-
cations [7, 9]. The algorithm is applied by randomly selegtpairs of flow vectors
and generating hypotheses according to Equation 5 and asmgmalised mean
of the hypotheses generated. All flow vectors are then soeittdregard to that
hypothesis using cost function 2 to determine the inlierarsensus set, consisting

W('anr’ivm) = (4)
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Fig. 2 Estimation results for K-means (left plot) and RANSAC (tigiot), for synthetic flow,
30% outliers and 0.001 gaussian noise. Note the significaetter performance of the RANSAC
algorithm due to the Newton iteration step.

of all flow vectors whereey ;) <t (t is the acceptance threshold). The hypothesis
along with its consensus set is then used to initialise thetbleiteration discussed

in Section 4 and a refined estimate of both FOE and angulacitglis computed.
Over several iterations, the refined estimate with the ssiilesidual is chosen as
the best estimate from the algorithm.

4 Refining the motion estimate

In this section we present a geometric Newton algorithm ¢aatbe used to effi-
ciently refine the estimates of ego-motion based on minigishe cost (3). The
Newton algorithm requires a reasonable estimate of thd lm@@ma and iden-
tification of inlier flow vectors to provide a reliable estiteaof ego-motion. The
implementation of the Newton also needs to respect the wminhrconstraint on
the focus-of-expansion estimatein” the optimisation problem. We achieve this by
deriving the Newton algorithm with respect to the geomefrthe constraint set.
Details on geometric optimisation algorithms can be foumdlsil et al. [1].
For the sake of simplifying notation we define

Z(Q):= (o(n)+Qxn) xn. (6)

The geometric gradient of is an element 011'<W‘Q)S2 x R3. It is obtained by dif-

ferentiatingf (W, Q) in an arbitrary direction and then using the natural Rierigmn
metric to obtain a tangent vector;

~oAL Py z.n: Z(_Q)ZT(_Q) W
gradf(w, 2) = <z(i“1 (1<vaZ<Q>>Pni)vv > 7)

recalling that?, = 13— w' is the projection ontd, <.

It is possible to consider a gradient descent method to éggeithe cost function
f (3). However, due to the inherent nature of the data, thefaostion is several or-
ders of magnitude more sensitive to change in the angulacitglestimate than the
FoE estimate, leading to a highly ill-conditioned optintisa problem. In practice,
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effective implementation of a gradient descent algorithaula require precondi-
tioning of the gradient. Since an initial guess of the localima is available from
the K-means or RANSAC algorithm (Section 3) it is possibletercome this dif-
ficult by using a Newton algorithm directly.

The geometric Hessian fdrcan be written

Hesd (W, Q) = (8)
( Pa (3112(2)2(2)") Py —Pa Yl (W'Z(Q))Py, +Z(Q)WTPm)>
( T ))]Pm +]P)T7|WZ(Q) )PW ZIn: (Pm \NWTP’%)

The Hessian is written as a an elemenR&k® due to the identification of tangent
vectors inT;S? with elements ofR3. However, the vector is normal to the tangent
spaceTly S and it follows thaty := (W,0) € RS is a zero eigenvector of the Hessian
Hesd in (8). The remaining five eigenvalues are associated wélgttadratic struc-
ture of the cosf at the poinfW, Q). Due to the zero eigenvalue the inverse Hessian
in the Newton algorithm has to be implemented with a pseuderge routine. In
addition, the new estimate must be re-normalised onto therspat each iteration
of the Newton algorithm [1]. For initial conditions closettee minimum off each
iteration of the Newton algorithm provides an additionad tovders of magnitude of
accuracy. In practice, at most two or three iterations afficgnt for the purposes
of our calculations given that a suitable initial conditisravailable.

As an additional advantage of applying the Newton algorijtitiis a straightfor-
ward exercise to compute the condition number of the Hesassathe ratio of the
magnitudes of largest to smallest eigenvalues of the fivenmgéul eigenvalues of
Hesd at the cost minimum. The condition number provides a rditghineasure
for the estimate of ego-motion of the system, a large camitiumber indicating
that the minimisation is highly ill-conditioned. The eig#ructure of the Hessian
can be used to identify directions of poor resolution of the-enotion parameters.

5 Results

The combined algorithms were thoroughly tested with sytithly generated op-
tical flow data, and on real video sequences obtained fromadl soale quad-rotor
aerial vehicle. For the synthetic data, the true ego-matiote vehicle is known
and can serve as ground truth for comparisons. For the vatpeesices from the fly-
ing vehicle the inertial measurements from the on-board WkJje recorded. The
measured rotations are used to de-rotate the spherical &t Tihe trajectories of
the vehicle can be compared qualitatively to the data obthin

For the simulation tests the flow field was generated by argadi gaussian-
distributed point field (offset from origin: 18 along y-ax@gma=10) for one-sided
flow coverage. The offset of the point field simulates inccetgflow from a sin-
gle camera, covering slightly less than half of the spheestsIfor surrounding
flow coverage where conducted on a gaussian point field @hiethe origin with
the same variance. Flow is created by translating and ngtatie point field, and
projecting start- and end position onto the sphere. A aeparcentage of vectors
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One-sided flow
outliers, noise— 0% 0.0 0% 0.001 30% 0.0 30% 0.00] 30% 0.002
K-means (translation) 0.061 0.03 2.1 1.9 12 1.1 31 250 56 49
RANSAC (translation) 0.001 0.001 1.0 0.9 050.003 22 1§ 7.7 34
K-means (with rot.) 159 154 15.2 14.0 179 16.0 20.0 16.0 17.6 13.7
RANSAC (with rot.) 0.740.002 6.0 09 196 13.7 128 10.2 13.2 127

Surrounding flow
outliers, noise— 0% 0.0 0% 0.001 30% 0.0 30% 0.001 30% 0.002
K-means (translation) 0.03 0.01% 1.50 1.4 14 11 25 20 40 30
RANSAC (translation) 0.002 0.001 0.5 0.4 0.20.002 09 07 18 13
K-means (with rot.) 139 11.7 148 10.6 17.0 11.7 13.7 10.7 12.8 119
RANSAC (with rot.) 330001 12 0§ 129 6.1 116 48§ 141 71

Fig. 3 Mean error (left value) and median error (right value) of RoElegrees for synthetically
generated flow with one-sided flow (upper table) and surrmgnfiow (lower table) coverage

(30%) is randomised to simulate large outliers, and gangssigse ¢ = 0.001 or

o = 0.002) is added where appropriate in the simulations. The atnafuoutliers

and noise approximately reflect or exceed the distortionaddn real optical flow.
The results can be seen in figures 3. Parameters for the Karadgorithm were
k=20, and 70 randomly picked pairs. The RANSAC algorithmsu8éterations, a
threshold = 0.05, 20 vector pairs for the initial hypothesis. The Newtagoaithm

was run for four iterations.

A key observation found was that the performance of the Krmaesgorithm
was not sufficiently reliable to use as the initialisationtfte Newton algorithm. In
particular, the segmentation of the image flow vectors wassafficiently robust
and the Newton iteration was often undertaken with someéesstihat significantly
disrupted the performance of the algorithm. As a consemieéhe K-means results
are presented without any refinement step while the RANSAGrahm contains
the Newton refinement as an integral part. The relative pedioce of the K-means
(without Newton) versus the RANSAC (with Newton) is cleaslyen in Figure 2.
This can also be seen in the results shown in Table 3. Nevesthen the absence
of noise all algorithms perform well, even when flow can orgydbtained from one
side of the sphere. As noise increases, one-sided flow épindeecomes increas-
ingly unstable (notably it is more affected by noise than bgliers). If residual
rotation of up to 15 degrees/sec is present in the flow fietd @ue to imperfect
inertial measurements - see lines 3 and 4 in table 3), th@atstin results worsen -
again more pronounced in the one-sided case.

The algorithms were also applied to video sequences that eadlected from a
small quad rotor flying vehicle (see Figure 1). The electrally stabilised vehicle
is equipped with a forward looking camera with approximatefO degrees field
of view, an IMU, and radio systems that transmit the reaktvideo images (25
fps) and inertial measurements to the base station. Botfalsigvere synchronised
and recorded on the base station. Approximately 100 flowoveatere computed
from the image. The test sequences used in this paper coosisie vehicle flying
repeatedly forward and backwards by approximately 1.5 no. fBsts were run, the
first where the flight was close to linear forward and backwand the second where
the flight was roughly oval. The flight tests were conductetbors in a confined
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50 100 150 200 250 300 50 100 150 200 250 300
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Fig. 4 FoE extraction for real world flyer scenarios. The upper thaispare for linear flight for-
wards and backwards. The lower two plots are for roughly avation of the flyer. The plots on
the left show the estimates from K-means, the plots on th# sigow the RANSAC results.

space, with most obstacles being 1-3 m away from the vehitlez-axis denotes
the forward direction of the flyer, theaxis points to the right, and theaxis points
up. Ground truth data was not available for the flight tesiguieé 4 shows the FoE
estimates for the flyer with the upper two figures showing #sailts for linear flight
and the lower two showing results for oval flight. The estiesadre in vehicle (or
camera) coordinates, thus, banking or pitching motions raaylt in deviations of
the estimate from a straight line in world coordinates, havesuch motions are
small. A sliding window filter of 10 frames was applied to tHetp for clarity. The
plots show that for real data, both the K-means and RANSAGralgn deliver
reasonably good estimates of the direction of travel. Thdtiathal advantages of
the RANSAC algorithm are somewhat impacted by the qualithefdata.

6 Conclusions

Two methods were presented for estimating the focus of estparfrom sparse
panoramic optical flow fields, namely a K-means clusterinthoe, and a RANSAC
framework using a Newton iteration for model fitting. Thelears introduced a cost
function, gradient and Hessian for estimation of directibtravel, and ego-rotation,
which enables gradient descent methods and Newton metboéstimating ego-
motion from spherical optic flow. The presented methods wdtk sparse, patchy
flow fields, even if less than half the sphere is covered. Measents from iner-
tial sensors are used to provide a good initial value in imtafor the algorithms.

Removing rotation from the flow field improves the resultsnéfigantly. The al-

gorithms were evaluated and compared on synthetic dataastfaund that the
RANSAC algorithm performs better, but also that the K-mealgsrithm provides

good results at much less computational cost. Tests on \addadnertial measure-
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ments from a quad-rotor flying vehicle show that both aldyonis can be applied to
real data obtained from a single fish-eye camera, and preMi®d estimate of the
direction of travel.
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