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Abstract This paper considers the problem of tracking the focus of expansion of a
panoramic image sequence due to ego motion of the camera. Thefocus of expansion
provides a measurement of the direction of motion of the vehicle that is a key re-
quirement for implementing obstacle avoidance algorithms. We propose a two stage
approach to this problem. Firstly, external angular rotation measurements provided
by an on-board inertial measurement unit are used to de-rotate the observed optic
flow field. Then a robust statistical method is applied to provide a rough estimate of
the focus of expansion as well as a selection of inlier data points associated with the
hypothesis. This is followed by a least squares minimisation, utilising only the inlier
data, that provides accurate estimates of angular rotationand focus of expansion of
the flow. For the robust estimator we consider and compare RANSAC or k-means
segmentation algorithms. The least squares optimisation is solved using a geomet-
ric Newton algorithm. The approach is demonstrated on real data obtained from an
aerial robotic equipped with panoramic cameras.

1 Introduction

The estimation of the ego-motion of a camera from observation of a sequence of im-
ages is a classical problem in the computer vision literature. The classical approach
for a projective camera involves recovery of the fundamental matrix between each
two images and reconstruction of the motion primitive from these correspondences.
Algorithms based on eight or more point correspondences [17, 9] are well known,
while for calibrated cameras algorithms exist for as few as five point correspon-
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Fig. 1 Video image and optic flow (left) extracted from on-board video camera of theHumming-
bird quad-rotor aerial robot (right)

dences [14, 19]. In the case where high accuracy is required the bundle adjustment
method can be used [22]. In addition to the classical methods, there have been a
wide range of other methods considered in the literature [13, 20, 11, 10, 3, 18].

It is well known that for an image sequence with a small field-of-view it is dif-
ficult to distinguish between translation and rotation around orthogonal axes [2, 6].
In addition, there is is often a natural bias in solving the instantaneous epipolar con-
straint, the most common approach to recovering instantaneous motion, associated
with grouping of image points in one small area [6]. Using panoramic or catadiop-
tric cameras with a large field-of-view can substantially overcome this issue [6].
Due to the inherent ambiguity in velocity there have been a number of studies based
qualitative analysis of ego-motion methods [4, 5, 21] that utilise panoramic cam-
eras, however, these methods often use explicit search routines to determine the best
motion fit and are computationally expensive. In recent workLim and Barnes have
developed methods to compute ego-motion from antipodal pairs of optic flow vec-
tors [15, 16]. Almost all the literature in this area has beendeveloped based on the
assumption that the camera is the only sensor. In robotic applications, especially
those involving aerial robots, there is almost always an inertial measurement unit
(IMU) embarked on the vehicle that can provide a substantially correct estimate of
rotation over short periods. However, the vision system forsuch applications of-
ten has poor quality optics, and if the video signal is being transmitted to ground
there are artifacts due to signal interference. The authorsknow of no prior work
that addresses the specific issues associated with ego-motion extraction for such a
situation.

In this paper, we propose an algorithm for extracting ego-motion from a pano-
ramic image sequence where the angular velocity of rotationcan be roughly mea-
sured using a separate sensor. We are primarily motivated byapplications in aerial
robotics where the vehicle is equipped with a wide angle fish-eye (or catadioptric)
lens, and inertial sensors. The vision sequences obtained from such vehicles often
contain large regions where there is insufficient texture togenerate optic flow, for
example, regions of sky, or regions distant from the camera where the optics are
of insufficient quality to generate good texture. In addition, there are often extreme
outliers in the optic flow field caused by errors in the optic flow algorithm induced
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by artifacts in the video due to signal interference and multi-path effects in video
transmission. We propose a two stage approach. Firstly, optic flow is computed from
the image sequence and then this flow is roughly de-rotated using the data from the
gyrometer. This is achieved by subtracting the expected rotational optic flow (due to
the measured angular velocity) from the measured optical flow. The resulting flow
is almost entirely due to the translational ego-motion of the camera, except for er-
rors and noise, and has a simple structure that allows us to develop simple models
to determine the unique Focus-of-Expansion (FoE), corresponding to the direction
of motion of the camera. We investigate two robust statical methods, RANSAC and
K-means, aimed at generating a reasonable hypothesis of theFoE of the flow and
identify inlier and outlier optic flow measurements in the data. The K-means al-
gorithm has the advantage that it can potentially identify and segment secondary
motion primitives that may be associated with motion of other objects within the
scene. We then describe how an initial estimate can be refinedin both translation
and residual rotation by minimising a least squares cost based on the instantaneous
epipolar condition posed on the sphere. We compute the geometric gradient and
geometric Hessian and propose a Newton update step. The Newton minimisation is
embedded in the RANSAC framework as the second model refinement step for each
iteration. Given that the initial estimate provided by the first stage of the algorithm
is moderately correct, this stage usually converges in at most three iterations. More-
over, the eigenvalues of the Hessian provide a measure of confidence in the estimate.
A poor condition number for the Hessian indicates the likelihood of an unreliable
estimate and the overall magnitude of eigenvalues is proportional to distance scaled
velocity of the vehicle. The proposed algorithms are testedon synthetic data with
outliers and noise, and demonstrated on video and inertial data obtained on a small
aerial robotic vehicle.

2 Problem formulation

In this section, we introduce some notation and develop the cost function that will
be used to refine ego-motion estimates on the sphere.

We are interested in applications where there is a wide field of view fish eye or
catadioptric video camera moving through a static world environment. We assume
that the camera frame rate is fast compared to the relative optical velocity of the
observed scene. Consequently the optic flow can be computed directly on the raw
image sequence and the resulting flow vectors mapped back onto a spherical image
plane based on a known calibration of the camera. The spherical optical flow field
is denotedΦ and associates a flow vectorΦ(η) ∈ Tη S2 in the tangent space of the
sphere to a pointη ∈ S2 on the sphere. In practice, we are normally constrained to a
sparse computation of optic flow, that is measurements at a finite number of points
on the sphere that we will index by{ηi} for i = 1, . . . ,n, with n the number of optic
flow vectors measured in a given reference image.

The optic flow can be split into a translational and a rotational part

Φ(η) = Ψ(η)+Θ(η). (1)
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HereΘ(η) := −Ω × η , with Ω ∈ {B} the body-fixed frame angular velocity of
the camera, is the contribution to the optic flow from the rotational motion of the
camera, while the translation component of flow is given byΨ(η) := 1

λ (η)Pηv,

wherePη = (I3−ηη⊤) is the projector ontoTη S2 andv ∈ {B} is the body fixed
frame translational velocity of the vehicle.

In order to derive an optimisation based method for identification of ego motion
it is necessary to define a cost function. We propose to use a modified version of the
instantaneous epipolar constraint. Let ˆw denote the estimate ofw ∈ S2 of the true
direction of motion of the vehicle. That is, set

w =
v
|v|

, for v 6= 0,

andŵ ∈ S2 an estimate ofw ∈ S2. The direction of motionw is also the Focus-of-
Expansion (FoE) of the translational flow fieldΦ on the sphere.

For each individual optic flow vectorΦ(η) measured at a pointη ∈ S2 the in-
stantaneous epipolar constraint computed for estimates ˆw andΩ̂ is

eΦ(η)(ŵ,Ω̂) := 〈ŵ,
(

Φ(η)+ Ω̂ ×η
)

×η〉. (2)

Note that ifΩ̂ is correct thenΦ(η)+ Ω̂ ×η = Ψ(η) is the true translational optic
flow. Taking the vector product of this with its base pointη leads to a vector that is
orthogonal to the direction of motion of the vehicle. Takingthe inner product of the
resulting vector with ˆw is zero precisely when ˆw = w is the true direction of motion.
The instantaneous epipolar constraint is often written〈ŵ × η ,

(

Φ(η)+ Ω̂ ×η
)

〉,
however, this can be transformed into (the negative of) Equation (2) using the prop-
erties of vector triple products and the form given above is more convenient for the
gradient and Hessian computations undertaken later.

Since the optic flow is measured at a finite number of scatteredpoints the cost
considered is a sum

f (ŵ,Ω̂) :=
n

∑
i=1

e2
Φ(η)(ŵ,Ω̂ ) =

n

∑
i=1

〈ŵ,
(

Φ(η)+ Ω̂ ×η
)

×η〉2 (3)

It is clear that for ideal data the costf is zero for the correct for ˆw = w andΩ̂ = Ω .
The cost f is a smooth functionf : S2 ×R

3 → R and can be optimised on this
set using geometric concepts. A weakness of the cost proposed is that it is highly
susceptible to perturbation by large magnitude outliers inthe data. Optic flow al-
gorithms often yield exactly this sort of error due to occasional mismatched point
correspondences. Thus, direct minimisation of the costf is likely to lead to poor
ego-motion estimation. The following section applies robust statistical algorithms
to overcome this issue.
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3 Robust estimation of Focus of Expansion

In this section we present two robust statistical methods for providing an estimate
of focus-of-expansion of the image sequence. The approach is directly based on the
application domain and we assume that a measurement of angular velocity of the
vehicle is available. This is obtained through the inertialmeasurement unit that is
mounted on the aerial vehicles that we consider.

Using the measured angular velocity,Ωy ∈ {B}, the measured optic flow can be
de-rotated. That is we define

ΨΩy(ηi) := Φ(ηi)−ΘΩy(ηi) = Φ(ηi)+ Ωy×ηi.

The resulting estimate,ΨΩy(ηi), of translational flow is only defined at measured
flow pointsηi.

Any two measurements of translational flowΨΩy(ηi) andΨΩy(η j) can be used
to generate a hypotheses for the focus of expansion of the flowfield. Since the flow
vectors must lie in a plane containing the flow vector and the base pointη then the
intersection of these two planes provides an estimate of thefocus-of-expansion for
the flow field. Thus,

ŵ(Ωy,ηi,η j) :=
(ΨΩy(ηi)×ηi)× (ΨΩy(η j)×η j)

|(ΨΩy(ηi)×ηi)× (ΨΩy(η j)×η j)|
. (4)

This hypothesis is sign indeterminate so we introduce a corrected hypothesis ˆwc is

ŵc(Ωy,ηi,η j) := ŵ(Ωy,ηi,η j) ·sign(〈ŵ,Φ(η1)〉) (5)

There are potentiallyn(n−1)/2 (wheren is the number of flow vectors measured)
hypotheses that can be generated based on (4).

The K-means algorithm is based on collecting a large number of of hypothe-
ses and then clustering these hypotheses into classes. Thisis a standard algorithm
[8, 12] that is extensively used in the field of computer vision and we will not cover
the details of the algorithm implementation. Distance between hypotheses was mea-
sured by the cosine of the angle between the two hypotheses. The estimate of the
focus-of-expansion is provided by the normalised mean of the largest cluster of hy-
potheses. Outliers are identified using the clustering identification of the algorithm.
The Newton algorithm, described in Section 4 can be applied to the support set of
the best cluster from the K-means algorithm to refine the bestestimate, however it
was found that this would often not converge if there are outliers present (see section
5).

To overcome these limitations, we merged the hypothesis generation of the K-
means approach and the Newton model refinement into a more robust RANSAC
framework. The RANSAC algorithm is based on consensus scoring of hypotheses
and once again is a well known algorithm extensively used in computer vision appli-
cations [7, 9]. The algorithm is applied by randomly selecting pairs of flow vectors
and generating hypotheses according to Equation 5 and usinga normalised mean
of the hypotheses generated. All flow vectors are then scoredwith regard to that
hypothesis using cost function 2 to determine the inlier or consensus set, consisting
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Fig. 2 Estimation results for K-means (left plot) and RANSAC (right plot), for synthetic flow,
30% outliers and 0.001 gaussian noise. Note the significantly better performance of the RANSAC
algorithm due to the Newton iteration step.

of all flow vectors whereeΦ(η) < t (t is the acceptance threshold). The hypothesis
along with its consensus set is then used to initialise the Newton iteration discussed
in Section 4 and a refined estimate of both FoE and angular velocity is computed.
Over several iterations, the refined estimate with the smallest residual is chosen as
the best estimate from the algorithm.

4 Refining the motion estimate

In this section we present a geometric Newton algorithm thatcan be used to effi-
ciently refine the estimates of ego-motion based on minimising the cost (3). The
Newton algorithm requires a reasonable estimate of the local minima and iden-
tification of inlier flow vectors to provide a reliable estimate of ego-motion. The
implementation of the Newton also needs to respect the unit norm constraint on
the focus-of-expansion estimate ˆw in the optimisation problem. We achieve this by
deriving the Newton algorithm with respect to the geometry of the constraint set.
Details on geometric optimisation algorithms can be found in Absil et al. [1].

For the sake of simplifying notation we define

Z(Ω̂ ) :=
(

Φ(η)+ Ω̂ ×η
)

×η . (6)

The geometric gradient off is an element ofT(ŵ,Ω̂)S
2×R

3. It is obtained by dif-

ferentiatingf (ŵ,Ω̂) in an arbitrary direction and then using the natural Riemannian
metric to obtain a tangent vector;

gradf (ŵ,Ω̂ ) =

(

Pŵ
(

∑n
i=1 Z(Ω)Z⊤(Ω)

)

ŵ
−∑n

i=1

(

(ŵ⊤Z(Ω))Pηi ŵ
)

)

, (7)

recalling thatPv = I3− vv⊤ is the projection ontoTvS2.
It is possible to consider a gradient descent method to optimise the cost function

f (3). However, due to the inherent nature of the data, the costfunction is several or-
ders of magnitude more sensitive to change in the angular velocity estimate than the
FoE estimate, leading to a highly ill-conditioned optimisation problem. In practice,



Estimating Ego-Motion in Panoramic Image Sequences with Inertial Measurements 7

effective implementation of a gradient descent algorithm would require precondi-
tioning of the gradient. Since an initial guess of the local minima is available from
the K-means or RANSAC algorithm (Section 3) it is possible toovercome this dif-
ficult by using a Newton algorithm directly.

The geometric Hessian forf can be written

Hessf (ŵ,Ω̂) = (8)
(

Pŵ
(

∑n
i=1 Z(Ω)Z(Ω)⊤

)

Pŵ −Pŵ ∑n
i=1

(

(ŵ⊤Z(Ω))Pηi + Z(Ω)ŵ⊤
Pηi

)

−∑n
i=1

(

(ŵ⊤Z(Ω))Pηi +PηiŵZ(Ω)⊤
)

Pŵ ∑n
i=1

(

Pηiŵŵ⊤
Pηi

)

)

The Hessian is written as a an element ofR
6×6 due to the identification of tangent

vectors inTŵS2 with elements ofR3. However, the vector ˆw is normal to the tangent
spaceTŵS2 and it follows thatv0 := (ŵ,0) ∈ R

6 is a zero eigenvector of the Hessian
Hessf in (8). The remaining five eigenvalues are associated with the quadratic struc-
ture of the costf at the point(ŵ,Ω̂). Due to the zero eigenvalue the inverse Hessian
in the Newton algorithm has to be implemented with a pseudo inverse routine. In
addition, the new estimate must be re-normalised onto the sphere at each iteration
of the Newton algorithm [1]. For initial conditions close tothe minimum off each
iteration of the Newton algorithm provides an additional two orders of magnitude of
accuracy. In practice, at most two or three iterations are sufficient for the purposes
of our calculations given that a suitable initial conditionis available.

As an additional advantage of applying the Newton algorithm, it is a straightfor-
ward exercise to compute the condition number of the Hessianas the ratio of the
magnitudes of largest to smallest eigenvalues of the five meaningful eigenvalues of
Hessf at the cost minimum. The condition number provides a reliability measure
for the estimate of ego-motion of the system, a large condition number indicating
that the minimisation is highly ill-conditioned. The eigenstructure of the Hessian
can be used to identify directions of poor resolution of the ego-motion parameters.

5 Results

The combined algorithms were thoroughly tested with synthetically generated op-
tical flow data, and on real video sequences obtained from a small scale quad-rotor
aerial vehicle. For the synthetic data, the true ego-motionof the vehicle is known
and can serve as ground truth for comparisons. For the video sequences from the fly-
ing vehicle the inertial measurements from the on-board IMUwere recorded. The
measured rotations are used to de-rotate the spherical flow field. The trajectories of
the vehicle can be compared qualitatively to the data obtained.

For the simulation tests the flow field was generated by creating a gaussian-
distributed point field (offset from origin: 18 along y-axis, sigma=10) for one-sided
flow coverage. The offset of the point field simulates incomplete flow from a sin-
gle camera, covering slightly less than half of the sphere. Tests for surrounding
flow coverage where conducted on a gaussian point field centered in the origin with
the same variance. Flow is created by translating and rotating the point field, and
projecting start- and end position onto the sphere. A certain percentage of vectors
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One-sided flow
outliers, noise→ 0% 0.0 0% 0.001 30% 0.0 30% 0.001 30% 0.002
K-means (translation) 0.061 0.03 2.1 1.8 1.2 1.1 3.1 2.50 5.6 4.9
RANSAC (translation) 0.001 0.001 1.0 0.9 0.5 0.003 2.2 1.6 7.7 3.4
K-means (with rot.) 15.9 15.4 15.2 14.0 17.9 16.0 20.0 16.0 17.6 13.7
RANSAC (with rot.) 0.74 0.002 6.0 0.9 19.6 13.7 12.8 10.2 13.2 12.7

Surrounding flow
outliers, noise→ 0% 0.0 0% 0.001 30% 0.0 30% 0.001 30% 0.002
K-means (translation) 0.03 0.015 1.50 1.0 1.4 1.1 2.5 2.0 4.0 3.0
RANSAC (translation) 0.002 0.001 0.5 0.4 0.2 0.002 0.9 0.7 1.8 1.3
K-means (with rot.) 13.9 11.7 14.8 10.6 17.0 11.7 13.7 10.7 12.8 11.9
RANSAC (with rot.) 3.3 0.001 1.2 0.5 12.9 6.1 11.6 4.8 14.1 7.1

Fig. 3 Mean error (left value) and median error (right value) of FoEin degrees for synthetically
generated flow with one-sided flow (upper table) and surrounding flow (lower table) coverage

(30%) is randomised to simulate large outliers, and gaussian noise (σ = 0.001 or
σ = 0.002) is added where appropriate in the simulations. The amount of outliers
and noise approximately reflect or exceed the distortions found in real optical flow.
The results can be seen in figures 3. Parameters for the K-means algorithm were
k=20, and 70 randomly picked pairs. The RANSAC algorithm uses 8 iterations, a
thresholdt = 0.05, 20 vector pairs for the initial hypothesis. The Newton algorithm
was run for four iterations.

A key observation found was that the performance of the K-means algorithm
was not sufficiently reliable to use as the initialisation for the Newton algorithm. In
particular, the segmentation of the image flow vectors was not sufficiently robust
and the Newton iteration was often undertaken with some outliers that significantly
disrupted the performance of the algorithm. As a consequence, the K-means results
are presented without any refinement step while the RANSAC algorithm contains
the Newton refinement as an integral part. The relative performance of the K-means
(without Newton) versus the RANSAC (with Newton) is clearlyseen in Figure 2.
This can also be seen in the results shown in Table 3. Nevertheless, in the absence
of noise all algorithms perform well, even when flow can only be obtained from one
side of the sphere. As noise increases, one-sided flow extraction becomes increas-
ingly unstable (notably it is more affected by noise than by outliers). If residual
rotation of up to 15 degrees/sec is present in the flow field (i.e. due to imperfect
inertial measurements - see lines 3 and 4 in table 3), the estimation results worsen -
again more pronounced in the one-sided case.

The algorithms were also applied to video sequences that were collected from a
small quad rotor flying vehicle (see Figure 1). The electronically stabilised vehicle
is equipped with a forward looking camera with approximately 170 degrees field
of view, an IMU, and radio systems that transmit the real-time video images (25
fps) and inertial measurements to the base station. Both signals were synchronised
and recorded on the base station. Approximately 100 flow vectors were computed
from the image. The test sequences used in this paper consists of the vehicle flying
repeatedly forward and backwards by approximately 1.5 m. Two tests were run, the
first where the flight was close to linear forward and backward, and the second where
the flight was roughly oval. The flight tests were conducted indoors in a confined
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Fig. 4 FoE extraction for real world flyer scenarios. The upper two plots are for linear flight for-
wards and backwards. The lower two plots are for roughly ovalmotion of the flyer. The plots on
the left show the estimates from K-means, the plots on the right show the RANSAC results.

space, with most obstacles being 1-3 m away from the vehicle.Thez-axis denotes
the forward direction of the flyer, thex-axis points to the right, and they-axis points
up. Ground truth data was not available for the flight tests. Figure 4 shows the FoE
estimates for the flyer with the upper two figures showing the results for linear flight
and the lower two showing results for oval flight. The estimates are in vehicle (or
camera) coordinates, thus, banking or pitching motions mayresult in deviations of
the estimate from a straight line in world coordinates, however, such motions are
small. A sliding window filter of 10 frames was applied to the plots for clarity. The
plots show that for real data, both the K-means and RANSAC algorithm deliver
reasonably good estimates of the direction of travel. The additional advantages of
the RANSAC algorithm are somewhat impacted by the quality ofthe data.

6 Conclusions

Two methods were presented for estimating the focus of expansion from sparse
panoramic optical flow fields, namely a K-means clustering method, and a RANSAC
framework using a Newton iteration for model fitting. The authors introduced a cost
function, gradient and Hessian for estimation of directionof travel, and ego-rotation,
which enables gradient descent methods and Newton methods for estimating ego-
motion from spherical optic flow. The presented methods workwith sparse, patchy
flow fields, even if less than half the sphere is covered. Measurements from iner-
tial sensors are used to provide a good initial value in rotation for the algorithms.
Removing rotation from the flow field improves the results significantly. The al-
gorithms were evaluated and compared on synthetic data; it was found that the
RANSAC algorithm performs better, but also that the K-meansalgorithm provides
good results at much less computational cost. Tests on videoand inertial measure-
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ments from a quad-rotor flying vehicle show that both algorithms can be applied to
real data obtained from a single fish-eye camera, and providea good estimate of the
direction of travel.
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